A SIMPLE METHOD FOR THE DETERMINATION OF RATE CONSTANTS AT COALESCENCE OF EXCHANGING AB SYSTEMS IN DYNAMIC NMR
 Daniel Kost* and Arie Zeichner
 Department of Chemistry, Ben Gurion University of the Negev,
 Beersheva, Israel
 (Received in UK 1 Hoverber 1974; acoepted for pablication 13 Iovenber 1974)

Dynamic NMR measurements ${ }^{1}$ are most useful for the determination of energy barriers to conformational changes, such as pyramidal inversions $1 \mathrm{a}, \mathrm{d}-\mathrm{g}$, rotations about formal single bonds, ${ }^{1 a, g-h}$ and ring inversions. ${ }^{1 a}$ A number of methods have been used to calculate activation parameters from the temperature dependent $N M R$ spectra of exchanging diastereotopic groups. These methods include the complete line shape analysis (CLSA), that yields both enthalpies and entropies of activation, and coalescence measurements, in which a single rate constant (k_{c}) is evaluated at the temperature of highest line shape sensitivity, to yield a value for the free energy of activation $\left(\Delta G^{\neq}\right)$at this temperature. The coalescence rate constant can either be determined by line shape analysis, or by the use of approximate equations that relate it to certain spectral parameters. ${ }^{1,2}$ Although the use of such equations has been criticized as an unreliable procedure, ${ }^{1 a}$ it has been shown experimentally, ${ }^{3}$ and by a systematic comparison, ${ }^{4}$ that ΔG^{\neq}values obtained using these equations are in good agreoment with the results obtained by CLSA. This is true mainly in the case of uncoupled equally populated exchanging singlets, for which many of the approximate equations have been derived. For the exchange of coupled nuclei in an $A B$ spectrum, the equation $k_{c}=(\pi / \sqrt{ }) ~ \sqrt{ }\left(\Delta v^{2}+6 J^{2}\right)$ has been employed. ${ }^{5}$ Its usefulness was shown to be restricted within certain limits, 4 and hence it should be used with care.

We wish to propose a method for the determination of rate constants at the coalescence of an $A B$ spin system to a singlet. A single parameter, the width at half height $\left(W_{1_{2}}\right)$, is obtained from the spectrum at the coalescence point. This is used to evaluate k_{c} from a plot of k_{c} against $W_{1 / 2}$ (Figure 1), that has been calculated for various values of the coupling constant $J_{A B}$ by means of a line shape program. ${ }^{6}$ The only other parameter that is needed is $J_{A B}$, which must be measured
at the slow exchange limit. The use, at the coalescence temperature, of a $J_{A B}$ value that has been measured at lower temperature causes no difficulty, however, as spin spin couplings of individual conformations are known to be temperature independent. ${ }^{8}$

The chemical shift difference ($\Delta \nu_{A B}$) is also obtained from the same parameters by interpolation from the calculated plot (Figure 2). In all the approximate methods $\Delta v_{A B}$ is a necessary parameter, and its value at the coalescence point must be extrapolated from low temperature measurements. Since $\Delta v_{A B}$ is sometimes strongly temperature dependent, and since the exact nature of this dependence is unknown, a possible error in k_{c} is introduced by using $\Delta v_{A B}$ as an experimental parameter. This source of error is eliminated in the present method.

It is noteworthy to point out that in Figure 2 the curve for $J=2 \mathrm{~Hz}$ approaches a straight line with unit slope, as is predicted for the case of uncoupled singlets; likewise, the lowest curve on Figure 1 approaches the line $k_{c}=2.2 W_{\frac{1}{2}}$. This reconfirms the validity of the equations $\Delta v_{c}=W_{\frac{1}{2}}$ and $k_{c}=\pi \Delta v / \sqrt{2}$ for the coalescence of uncoupled (or, in this case, weakly coupled) singlets.

The main source of error in this method, as well as in CLSA upon which it is based, and in all other methods, remains the inaccuracy of temperature measurements. In view of this fact, and it being generally accepted that the most accurate parameter obtainable from DNMR is $\Delta G^{\boldsymbol{\#}}$, we believe that the present method can be used successfully for all simple AB systems and yield results in very good agreement with those obtained from the more laborious CLSA.

References

1. For leading references on DNMR see: (a) G. Binsch, Topics in Stereochem., 3, 97 (1968);
(b) R. Lynden-Bell, in "Progress in Nuclear Magnetic Resonance Spectroscopy," Vol. 2, eds.
J. W. Ensley, J. Feeney, and L. H. Sutcliffe, Pergamon Press, Oxford, 1967, ch. 4; (c) C. S. Johnson, jr., in "Advances in Magnetic Resonance," Vol. 1, ed. J. S. Waugh, Academic Press, New York, 1965, ch.2; (d) A. Rauk, L. C. Allen and K. Mislow, Angew. Chem. Internat. Edn., 9, 400 (1970); (e) J. B. Lambert, Topics in Stereochem., 6, 19 (1971); (f) J.-M. Lehn, Fortschr. Chem. Forsch., 15, 311 (1970); (g) H. Kessler, Angew. Chem. Internat. Edn., 9, 219 (1970); (h) W. E. Stewart and T. H. Siddal, III, Chem. Rev., 70, 715 (1970),

Figure 2: A plot of chemical shift differences vs. line

$A B$ quartet with various $J_{A B}$ values ($J_{A B}$ given in Hz).

Figure 1: A plot of rate constants vs. line widths at half height at the coalescence of an $A B$ quartet
with various $J_{A B}$ values ($J_{A B}$ given in $H z$). with various $\mathrm{JB}_{\mathrm{AB}}$
2. V. S. Dimitrov, Org. Hag. Resonance, 6, 16 (1974).
3. (a) K.-I. Dahlqvist, S. Forsen and T. Alm, Acta Chem. Scand., 24, 651 (1970); (b) E. H. Carlson, F. B. Jones, jr., and M. Raban, Chen. Comm., 1235 (1969); (c) M. Raban, F. B. Jones, jr., E. H. Carlson, E. Banucci, and N. A. LeBel, J. org. Chem., 35, 1496 (1970); (d) W. Egan, R. Tang, G. Zon, and K. Mislow, J. Amer. Chem. Soc., 93, 6205 (1971); (e) R. C. Neuman, jr., and V. Jonas, J. Org. Chem., 39, 925 (1974).
4. D. Kost, E. H. Carlson and M. Raban, Chem. Comm., 656 (1971).
5. R. J. Kurland, M. B. Rubin and M. B. Wise, J. Chem. Phys., 40, 2426 (1964).
6. We have used a modification of program Quabex from reference 1a, p. 180. A reasonable value of $T_{2}=0.4 \mathrm{~s}$ has been used throughout the calculations. It has been noted that the line shape near coalescence is insensitive to small changes in T_{2}. The usual definition of coalescence has been used, as in reference 4.
7. T. Drakenberg, K.-I. Dahlqvist and S. Forsen, Acta Chem. Scand., 24, 694 (1970).
8. J. W. Emsley, J. Feeney and L. H. Sutcliffe, 'High Resolution Nuclear Magnetic Resonance Spectroscopy", Vo1. 1, Pergamon Press, Oxford, 1965, p. 63.

